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Abstract—Within the enterprise the timely resolution of in-
cidents that occur within complex Information Technology (IT)
systems is essential for the business, yet it remains challenging
to achieve. To provide incident resolution, existing research
applies probabilistic models locally to reduce the transfers (links)
between expert groups (nodes) in the network. This approach is
inadequate for incident management that must meet IT Service
Levels (SLs). We show this using an analysis of enterprise
‘operational big data’ and the existence of collective problem
solving in which expert skills are often complementary and
are applied in sequences that are meaningful. We call such a
network - ‘Collective Expert Network’ (or CEN). We propose a
probabilistic model which uses the content-base of transfer se-
quences to generate assistive recommendations that improves the
performance of CEN by: (1) resolving incidents to meet customer
time constraints and satisfaction (and not just minimize number
of transfers); (2) conforming to previous transfer sequences that
have already achieved their SLs; and additionally (3) address
trust in order to ensure adoption of recommendations. We present
a two-level classification framework that learns regular patterns
first and then recommends SL-achieving sequences on a subset
of tickets, and for the remaining directly recommends knowledge
improvement. The experimental validation shows 34% accuracy
improvement over other existing research and locally applied
generative models. In addition we show 10% reduction in the
volume of SL breaching incidents, and 7% reduction in MTTR
of all tickets.

Index Terms—Classification; Complex Enterprise; Collective
Expert Networks; Human-in-the-loop; Knowledge Management;
Service Levels; Text Mining; Ticket Resolution Sequence; Trust

I. INTRODUCTION

Within many problem-resolution environments (e.g. emer-

gency response and triage, cloud-based service desks, supply

chain resilience, software bug tracking) complex problems

must be analyzed and solved within specific time constraints

by networks of experts in order to meet the business or the

social needs of the community. Here we research a specific

case of this general problem using extensive and detailed

real-world enterprise data related to IT Service Management

(defined by ISO 20,000 standard [12]).

This research focuses on a particular application – the

IT service desk (ITSD) and support organization which in

our case study resolve incidents from a complex data center

infrastructure and its service operations. Generally, incidents

lead to service loss or disruption. Incidents perceived by

customers are logged as tickets. Also the smallest unit of

problem solving in this study is an ‘expert group’ consisting

of technical individuals with common expertise. Our goal is

to develop a statistical learning framework that recommends

the best set of transfers to guide expert groups to collectively

work on a ticket and meet Service Levels (SL). In the

real world, SL is a time-and-satisfaction-based metric that

is defined for and contracted with different lines of business

customers. The framework derived from this research performs

efficient incident management. The framework is also widely

applicable to other service support environments characterized

by a small number of workflows that resolve a majority of

the tickets. In other words, the proposed solution benefits any

environment with an observable Pareto distribution [10] of

tickets over the resolution workflows.

The concept of ‘workflow’ is about expert groups that

commonly work sequentially on a ticket and transfer it along

to achieve resolution. Given a ticket, the sequence results in the

resolution of a ticket and is referred to as a Resolving Sequence

(TRS) for that ticket. A TRS of any ticket can be reflected

as a path on the Collective Expert Network (CEN). We start

by assuming that the TRSs captured in the historical incident-

resolution database form a digital trace (i.e. the set of transfer

sequences) of the best efforts of the expert groups thus far.

We will show these efforts often fail to meet service levels on

longer transfer sequences. This leaves opportunities for CEN

improvement with automated recommendation assistance.

This work establishes: (a) on frequent paths the SLs are very

likely to be met, and (b) the frequent ticket content is asso-

ciated with frequent paths (learned workflows) and therefore

are also likely to successfully meet the SLs. Thus the research

method is to make explicit the global knowledge exhibited

by the CEN on frequent content and SL-achieving TRSs (i.e.

paths that resolve) and use this to prevent ticket misrouting on

frequent content. This is accomplished by splitting the digital

trace into: (a) a trustworthy set which is used for probabilistic

sequence learning and recommendations to the human experts

and (b) the remaining unreliable set which is used to signal

anomalies in the content to draw early human attention within

the resolution process. We implement this with a two-level

classification framework that is experimentally shown to:

(1) improve the precision of recommendations by 34% over

existing content-aware sequence models; (2) improve Mean-

Time-To-Resolve by 7%; (3) reduce SL breaches by 10%; and

(4) maintain a high level of trust. The validation uses held-out

data generated in the production environment of the enterprise.



A. The Enterprise CEN Case

The data for this study has been collected from the IT

service support organization of a large insurance company with

an online business that serves over 18 million policyholders.

Within this environment thousands of incidents are generated

daily due to complex (diverse, layered, networked, evolving)

hardware and software items called configuration items (CIs).

These have to be resolved by the enterprise CEN (in our

case with 916 expert groups) for IT Service Support within

time constraints established by SL goals. While other current

research methods use machine learning applied to this prob-

lem, they focus only on reducing the number of transfers and

thus Mean-Steps-To-Resolve (MSTR) [7], [14]. However, they

have glossed over the Mean-Time-To-Resolve (MTTR) which

is critical for meeting SL goals. To illustrate this, data shows

that longer paths (i.e. more transfers to resolve) sometimes

reflect shorter time to resolve. That is, path length reduction

is not the primary goal. Such discrepancies in current research

and the needs of the enterprise in deploying a system useful

for assisting the ITSD and CEN guided us to conduct a more

detailed analysis of the enterprise operational data as the first

step. The analysis presented in this paper (i.e. Section II) is

therefore necessary to cull the principles that must govern

any solution to assistive recommendations making CEN more

effective in meeting SLs.

B. Contributions

There are three main contributions towards successful de-

ployment within the enterprise ITSD. (1) The detailed analysis

of extensive operational data to motivate the CEN conceptual

model appropriate for time-constrained problem solving by

expert networks as elaborated in Section II. (2) Using CEN

behavior insights obtained from the analysis to develop the

principles that must be met by assistive and trustworthy

recommendations in a two-level framework as explained in

Section IV. And (3) The supervised learning model that meets

the principles along with the experimental setup that show per-

formance improvement as presented in Section V. In addition

to these core contributions, the rest of the paper consists of

the related research in Section III, framework evaluation and

comparison in Section VI, and finally conclusions and future

work in Section VII.

II. CEN ANALYSIS

In this section we present the terminology and then charac-

terize the causes for poor performance. Existing poor perfor-

mance despite the enablement provided by current processes

and systems provide an understanding of the opportunities

for improvement. To avail of these we extract principles for

recommendations that address specific causes in a manner

consistent with CENs own natural behaviors. With the data

analysis below we systematically cover all observed aspects

of current CEN performance, CEN behavior characteristics

with respect to content and transfers, and principles that guide

beneficial assistance.

A. Terminology and Formalism

This formalism has been motivated by our analysis and

insights of collective behaviors that exist within the IT service

support organization and can be captured by networks [3].

By presenting the conceptual model the insights can later be

presented more succinctly.

To start with we define a Collective Expert Network (CEN )

on a set of resolved tickets T as a directed graph where expert

groups and transfers represent vertices and edges respectively:

CEN(T ) = (Experts, T ransfers) (1)

For a ticket t ∈ T a resolving sequence is t.rs:

t.rs =< e(1), e(2), ..., e(k) > (2)

Here e(i) is the ith expert group which was working on

t and received t from e(i−1), and transferred it to e(i+1)

(<> denotes an ordered list). The last expert group in the

sequence achieved resolution and is noted as the ‘resolver’

(t.resolver). Note that the above definition accommodates

duplicate elements in the sequence. Therefore, any resolving

sequence is a walk on the CEN. It is important to note that in

network theory the definition of a path does not entail duplicate

vertices but here a resolving sequence does. So for simplicity

we call any resolving sequence a path even though it contains

duplicate vertices. The Experts set is defined by the union of

expert groups that have worked on at least one ticket in T :

Experts =
⋃

t∈T ∧ ei ∈ t.rs

ei (3)

Transfers is the set of expert group pairs of the form

(a, b) which is a directed edge that belongs to Transfers if

there is at least one ticket transferred in T from expert group

a to expert group b. Formally:

(a, b) ∈ Transfers if ∃t ∈ T | < a, b >⊑ t.rs (4)

Here < a, b > denotes an ordered pair and ⊑ is the notation

we use for a ‘contiguous subsequence’. Also note that we

explicitly add self-loops to indicate resolvers as follows:

(a, a) ∈ Transfers if ∃t ∈ T | t.resolver = a (5)

Considering only edges and vertices as a base definition for

CEN, next we enhance the directed graph to make it a weighted

directed graph. Let the set of all tickets that got transferred

from a to b be denoted as Tab, then:

Tab =
⋃

t∈T ∧ <a,b>⊑ t.rs

t (6)

Now we define a weight for each edge (a, b) as the count

of tickets in T that got transferred along (a, b): wab = |Tab|
Also a self-loop (a, a) is weighted as waa and evaluates to

the count of tickets resolved in a. In order to obtain insights

about the CEN, we propose a transformation on the weights

introduced above. This transformation yields a Markov Chain

for the CEN which is a ‘memoryless’ probabilistic directed

graph. The resulting Markov chain is also atypical (compared



Fig. 1. A strongly connected component of the Collective Expert Network
within the enterprise with edge weights as conditional transfer probabilities.
Self-loops represent resolution.

with [14]) since it contains self loops characterizing resolvers.

w′
ab is the probability that a ticket was transferred to b after

that the ticket was received at a. Formally that is evaluated as:

w′
ab = P (b | a) =

wab
∑

[c∈Experts ∧ (a,c)∈Transfers] wac

(7)

Also w′
aa can be interpreted as the probability that a

resolves a ticket after receiving it. To illustrate the Markov

representation of the CEN in our case, the Tarjan algorithm

[18] was used to obtain strongly connected components. Figure

1 illustrates a strongly connected component of the CEN in

which each vertex is reachable from any other vertex. Note

that low-frequency edges (wij < 60) were removed upfront

to focus on dominant transfer patterns. Some of the insights

from this are: (1) the expert group ‘Queue’ almost evenly

distributes all of its tickets among ‘Connectivity’, ‘Personal

Devices’, ‘Network’ and ‘Application’. (2) ‘Queue’ does not

resolve any tickets. (3) ‘Application’ resolves more than half

(0.594) of all the tickets it receives, and transfers almost a

third of its non-resolved tickets (0.133) to ‘Personal Devices’

which is then more than 70% likely to get resolved at ‘Personal

Devices’. Thus the figure captures dynamics of workflows

from resolving sequences illustrating that the nodes of a CEN

play specific roles in a more global context. For example,

‘Depot’ does not resolve tickets, it appears to mediate among

four other groups. More detailed insights about roles are

discussed next.

Enterprise Taxonomy (i.e. ET) is a view of the CEN

constructed from transfer labels obtained within the enterprise

system. These labels were found to be related as a tree. Each

Fig. 2. Enterprise Taxonomy tree Associated with the Connected Component
of the CEN of Figure 1

internal node of this tree represents a conceptual scope of

responsibility (abstract role) and each leaf represents an expert

group (concrete role in the CEN). In this structure, a child is

a subarea of its parent. In knowledge representation terms,

if a child and its parent are both internal nodes they have

a ‘part-of’ relationship. Otherwise the child is a leaf and

has an ‘instance-of’ relationship. Figure 2 illustrates an ET

corresponding to the CEN of Figure 1.

Transfer distance: For each ticket t we define transfer

distance t.td which is the average pairwise distance on the

taxonomy tree between consecutive pairs of expert groups in

t.rs. Formally:

t.td =
1

| t.rs | −1

|t.rs|−1
∑

j=1

dET (e(j), e(j+1)) (8)

where dET is the pairwise distance function on the ET. Later

in Section II the transfer distance is used for further analysis.

Note that the ET tree and its association patterns make

explicit the important role of collective problem-solving be-

havior. The CEN has different skill groups working hard to

resolve the tickets by exhibiting collective intelligence. That

is, groups of individuals working together display intelligent

behavior that transcends individual contributions as in [4].

Returning back to the CEN view, an incident has two

phases, (1) the discovery phase by the end of which main

characteristics of the event is captured in a ticket, and (2)

the resolution phase in which the expert groups identify the

problem and restore the service to meet SL. The attributes

collected by the end of the discovery phase are:



• Content: Ticket content is text explaining the incident

in natural language. This field is a summary of what is

reported by the end-user. (denoted as t.c for a ticket t).

• Priority: Ticket priority is decided based on severity

and urgency of the reported incident to the customer

(denoted as t.p). Priority is an integer between 1 to 4,

where priority 1 signifies the most business-critical class

of tickets.

• Service − T ime (ST ): Each ticket has an assigned

service time defined as a part of its SL which indicates

the time limit by which the ticket has to be resolved to

maintain minimal impact to the business. The Service

Time of a ticket is decided based on ticket priority

(denoted as t.st). Details are also provided in Table I.

The attributes generated after the resolution phase are:

• T ime− To−Resolve (TTR): The time duration taken

to resolve the ticket (denoted as t.ttr).

• Resolving−Sequence (TRS): As defined above this is

the sequence of expert groups in the order they worked

on the ticket (denoted as t.rs or simply TRS).

SL goal or (SL) for incident management is to achieve ticket

resolution in collaboration with the customer and achieve this

within the predefined service time of each ticket. In other

words for each ticket the objective is: t.ttr 6 t.st. In an

aggregate level, we define a SL metric called Breach Ratio on a

ticket set which measures the ratio of the tickets in the set that

did not meet their service time to all of the tickets. Assuming

1 denotes the indicator function which takes a conditional

statement and returns 1 if the statement evaluates to true,

formally for a ticket set T ′ we define Breach Ratio as:

T ′.breachRatio =

∑

t∈T ′ 1(t.ttr > t.st)

|T ′|
(9)

B. Current CEN Performance

Incident Context and CENs Digital Trace: The digital

trace of CEN problem solving has 7250 distinct paths that

resolved incidents that were generated from over 7400 Con-

figured Items (CIs) in the IT infrastructure. The operational

data from the enterprise analyzed here consisted of 149,000

user-perceived tickets reported over a period of 13-months

and resolved by 916 unique expert groups through 267,721

transfers.

The priority levels are set between P1 (highest priority and

impact) to P4 (low priority and impact). The SL goal is more

relaxed for lower priorities. If the SL goal is not met the ticket

is said to breach the SL. Table I depicts that the CEN more

often resolves highest priority tickets within SL goals, and SL

breaches occur more with lower priority tickets.

Collective problem solving and performance: Longer

TRSs cause more difficulties in SL compliance. To prove

this, our objective is to examine the TRS length of the

tickets against their breach ratio. Given our ticket set, Fig-

ure 3 demonstrates (1) P (|t.rs| = TRS length) that is

the probability distribution of the length of TRSs, and (2)

P (t.ttr > t.st
∣

∣ |t.rs| = TRS length) that is the breach ratio

of tickets conditioned on their TRS length.

TABLE I
PRIORITY OF TICKET RELATED TO THE BREACH RATIOS

Priority Business Impact Service Time % of all Breach Ratio%

1 Significant 14 hrs 10.8% 6.1%

2 Moderate 34.5 hrs 45.1% 7.6%

3 Minor 46 hrs 25.5% 8.1%

4 Negligible 115 hrs 18.6% 10.0%

Fig. 3. Distribution of tickets per TRS length and Breach ratio of tickets per
TRS length

Observations: (1) The CEN is able to resolve most of its

tickets via short TRSs that is P (1 6 |t.rs| 6 4) = 0.79.

More generally, Figure 3 illustrates an exponential decay in

the volume of tickets as the TRS length increases. In other

words, a transfer chosen by the CEN to be executed on a

ticket is highly expected (with the probability greater than

0.5) to resolve that ticket. This establishes a power law [16]

distribution. Here for our ticket set, we experimentally found

the power law function that represents the probability of a

ticket being resolved by a TRS of length h where h ∈ N:

Presolve(|t.rs| = h) = 0.56 e(−0.82(h−1)) (10)

(2) Also per Figure 3 as the TRS length increases, the prob-

ability of the tickets breaching their SL increases. Although

longer TRSs are unlikely to occur, they are highly likely to

breach their SL. This presents an opportunity for improvement

by avoiding wrong transfers which are the leading cause of

longer resolving sequences, thus saving many tickets from the

inevitable SL breaches.

CEN transfer knowledge has semantic dependency asso-

ciations: We found that there are semantic association patterns

in the ET of the CEN. To show this we contrast two CEN

views - the network view (Figure 1) and the taxonomy-based

view (Figure 2). With Figure 2 we found the ET tree labels

identify expert groups based on semantics of the knowledge

that they possess related to: (1) a technology or application,

(2) a region of the physical facility, (3) a major enterprise

project, (4) a mediator or resolution role, or (5) a virtual

node representing a collection of sub nodes. The labels have



Fig. 4. Average Transfer Distance on ET grouped by t.rs length.

emerged over time and are locally used by humans interacting

with the workflow routing menu of the enterprise system

(without any assistance). The labels were found to form the

ET tree that makes explicit (in Figure 2) the knowledge

associations that are not shown in the view of Figure 1. With

this ET tree as the basis we also found that as length of t.rs

increases, the average t.td also increases as shown in Figure 4.

This implies that tickets with longer TRSs are more likely

to have long-distance transfers on the ET and this signals

increased incident complexity due to expertise needed from

distanced subtrees.

Observations: (1) On more frequent and shorter paths when

SLs are met they are also more likely aligned to the ET tree

structure (i.e. low average transfer distance). This shows that

the unassisted CEN problem solving is naturally of a collective

nature because specific sequences of labels of the ET tree have

become learned tacit transfer knowledge. The longer paths

are less frequent and they imply greater transfer distance on

the ET tree. This together with the semantic understanding

of the ET tree tells us that the increase in transfers is due to

complex or less frequent content needing collective knowledge

utilized from groups with very different skills on the tree. And

these long paths more often fail to meet SLs, thus, making the

opportunity for improvement a little more explicit.

(2) We also observed within some of the SL-compliant

TRSs, the nodes repeat. The entire TRS applies knowledge

based on the workflow needed and what collective knowledge

is needed next. To further illustrate with a simple case consider

the following ticket content: “Application X is not able to

connect to database D”. The t.rs for this is the following

sequence: ‘Connectivity’→ ‘Database Administration’ →
‘Connectivity’. The TRS thus has global characteristics, e.g.

connectivity group needs to execute problem solving twice:

the first time partially contributing to problem solving as a

‘collective contributor’; and the second time as ‘resolver’ who

also integrates and tests the solution. The SL is achieved

collectively by the entire TRS working start-to-finish, and

not simply by local fast-working groups. This means that

Fig. 5. Normalized frequency of paths – Pareto Chart

the Markov property which makes local statistical learning

feasible does not generally hold in the CEN context.

(3) Not all groups act as resolver groups and many TRSs

contain wasteful transfers due to lack of global transfer assis-

tance with the total problem faced by the CEN.

Note the points (1)-(3) above together provide the motiva-

tion for conceptualizing the entire TRS as a collective sequence

with global workflow characteristics.

Is there a viable business opportunity? The aspects of

analysis above point towards and opportunity for the assistive

model to help with the potential misroutable tickets where

the SL breaches. We must establish that there are enough

such cases and there is adequate performance improvement.

The business rationale required was in the form of poten-

tial improvement in performance versus resources needed

to achieve that improvement. The performance improvement

metrics identified were : (1) improve Mean-Time-To-Resolve;

(2) reduce SL breaches; (3) reduce the number of transfers

for specific priorities; and (4) maintain a high level of trust to

ensure the system is used and the investment is beneficial.

C. Digital trace characteristics – content & transfer knowledge

In the previous subsection we established that the CEN

could better benefit the business from recommendation assis-

tance on longer transfer sequences that are (1) more likely to

breach SL goals, and (2) that the entire sequence has global

associations that are tacit and also difficult for the CEN to

exhibit. Given the observations, the next related questions

are: (1) Is there machine learnable regularity exhibited in the

paths of the CEN; (2) How are the content and the paths

related? and (3) How do we ensure that the CEN trusts the

recommendations?

Regularity of the paths: Many of the paths are very

common reflecting the fact that the CEN’s digital trace of

collective problem solving is not erratic. The related analysis

is in Figure 5. This figure also shows that the Pareto Principle

holds: 5.5% of paths resolve 80% of the tickets. This skewed

distribution of the tickets over the paths helps identify the



subset of the paths that overcomes the challenge of data

sparsity, leading to effective machine learning on that subset.

Next we found that frequent content was also associated with

frequent paths that are more successful.

Observations: Regularity of global network knowledge is

exhibited by frequent paths (refer to as ‘Routine’ paths) that

mainly resolve certain frequent content. From the machine

learning standpoint, the goal is to choose a subset of all

the paths, which contains frequent and well-separated paths

(classes) for a multiclass classification algorithm resulting in

a generalizable trustworthy classifier. From the standpoint of

benefiting the CEN practically, the goal is to provide rec-

ommendations of routine paths that contain high-performing

global patterns and thus prevent tickets with frequent content

from taking suboptimal ‘non-routine’ paths.

D. Machine learning goals: trustworthy recommendations

with Routine-Content and Human-in-the-Loop with Non-

Routine-Content

With the potential for beneficial assistance established above

along with the business motivation, we next formulate the

machine learning research problem to address the observations

immediately above.

The goal is to develop assistive recommendations where

the machine itself (1) determines the conditions under which

it can learn and recommend based on some trustworthiness

criteria; (2) learns the global network knowledge in terms of

TRSs that can assist the CEN to meet SL; and finally (3) flags

where trustworthy recommendations are not possible and in

these cases increases the reliance on human problem solving

(i.e. without recommendations) and put effort into dynamic

knowledge creation. Thus this approach requires the machine

to differentiate between the Routine (R) problem solving

where it learns and recommends to meet SLs more effectively;

from the Non-routine (NR) where the human experts do better

to achieve SL and recommendations are not trustworthy.

Heuristics were adapted from [9] to label a subset of paths

as Routine (R-TRS) and the complement set as Non-routine

(NR-TRS). In Section IV, all of the tickets will be used to

train the top-level R/NR classifier, and routine paths only will

be used to train the second-level multi-class classifier.

The breach ratio of the R-TRS class was found to be almost

one-fourth of the NR-TRS class (2.26% to 8.25%). That is if

a recommendation correctly saves a ticket from a non-routine

path by recommending a R-TRS then there is 72% reduction

in its likelihood to breach. In our study, 14% of all the tickets

had regular content that got misrouted to a NR-TRS and the

recommendation system could save these cases. This leads

us to the conclusion that the expected breach ratio reduction

overall through beneficial recommendation is 14% × 72% =
10%.

E. Principles for improvement

According to [14], [7], [2], the existing research uses

statistical inference models to perform target prediction. These

studies trained their models on a set of triples of the form

< t.c, current − expert, next − expert > to locally infer

next most likely expert. In all of those studies, experimental

reduction in the MSTR is reported for a set of test tickets.

However, the real world enterprise deployment goal that is

meeting SL is particularly overlooked. The analysis in the

previous subsections has established the following principles

and our novel research goals:

1) Business performance is related to improved MTTR: That

is, in contrast to MSTR of previous research, MTTR is a

customer-facing measure and needed for ITSM. We need

an objective function maximizing likelihood of meeting

service times.

2) Assistive recommendations must be consistent with previ-

ous CEN behaviors along the entire TRS: As presented

earlier, we note that R-TRS’s are well-defined workflows

throughout which incremental contributions are made in the

context. Thus the machine learning and recommendation

must be on the entire TRS. (i.e. No conditional indepen-

dence assumption)

3) Trust is not achieved by noisy transfers: Noisy transfer

sequences with low probabilities for achieving SL goals are

not to be used for machine learning and are to be filtered

out through the R/NR classification. This will need a first

level for Routine (R)/Non-Routine(NR) inference and the

second level for actual path recommendation to improve

resolution within SLs.

4) Trustworthiness of recommendations must be considered:

At the User Interface, the presentation of the specific

recommendations must be followed by the percentage of

times it led their colleagues to successful resolution on that

content. The human is also notified when a trustworthy

recommendation is not available and the knowledge base

must be improved.

5) Experiments must demonstrate improvement where the

CEN struggles with content: The CEN is actually per-

forming as well as it can on frequent and high priority

tickets and the SLs are being met. Thus experiments in

the later Section explicitly show that there is enough other

opportunity to improve SL related to lower priorities or the

longer TRSs due to (1) poor transfer knowledge, (2) content

that is truly complex or new and the transfer knowledge is

not explicit, and (3) lack of resources or training [17].

III. RELATED RESEARCH

Collaborative problem solving is leveraged today in many

collaboration ecosystems. Question-answer microblogs such as

Stack Overflow, Quora, and WebMD have focused on taking

advantage of wisdom of the ‘qualified crowd’ in order to

answer questions in respective domains. Other systems go

further to exploit content expertise and network knowledge in

complex problem solving. Examples include medical systems

such as TriageLogic and InXite focus on resolving complex

medical cases through collective collaboration between care

providers. Work as a Service (WaaS) research in [11] proposes

a hub to achieve responsiveness and address unpredictability.



Fig. 6. Dynamic CEN recommendation framework

In general, however, the design of statistical models to guide

CEN groups to collectively achieve SL has not been addressed.

In the fields of Computer Supported Cooperative Work and

Social Networks, coordination mechanisms that address the

increasing complexity of collaboration has been extensively

studied [1]. As mentioned previously, pure inference models

[14], [7], [2], [8] focus on showing improvement by making

assumptions that are not valid for improving SLs. Chief

among these limiting assumptions are: knowledge applications

are locally determined, MSTR improvement goals suffice

(and MTTR remains unaddressed), and a lack of knowledge

improvement strategies that treat the real world as static.

Other approaches to enhancing the knowledge management

through community aware strategies are in [6]. The use of

event logs to reconstruct the process model as executed has

been studied by [19], [20] under the topic of process mining.

The applications explored include process conformance and

data provenance. These methods are relevant for extracting

span time, queue time, repeating patterns, etc. for better

TRS predictions. Finally, on-demand real time score and

recommendation systems are becoming increasingly popular.

These systems are most effective where critical decisions

are to be made in massive-scale within limited periods of

time, and otherwise can get heavily impacted by constrained

and error-prone human performance. Their applications range

from intelligent decision support systems [21], to automated

response assessment [15].

IV. ENTERPRISE CEN DEPLOYMENT

The two-level framework is illustrated in Figure 6. The

model developed is divided into offline training (left), and

on-demand recommendations (right). Offline training includes

computationally intensive operations and they lead to construc-

tion of the classification models. Formal details of training

are in Section V. On-demand recommendations apply the

classifiers on the unlabeled data and recommend actions for

achieving SL goal. Formalization details of recommendations

and their validation are given in Section VI.

Offline Operations – Top Level Training: Here we use a

Bayesian binary classifier that takes Natural Language (NL)

content, and identifies whether it is associated with highly

frequent paths (marked as Routine). Labeling strategy (R/NR)

for the paths is adapted from [9]. As shown in Figure 6, NL

features are extracted from training tickets and then used along

with their R/NR annotations to perform Bayesian inference.

Thus the top-level R/NR classifier is constructed for on-

demand use.

Offline Operations – Second Level Training: Next we

use a Bayesian multiclass classifier that takes NL content and

identifies a Routine path that is most likely to resolve the

incident. Here Bayesian inference is only performed for tickets

with routine resolving sequences. NL features are extracted

from those tickets (t.c) and are annotated with their associated

TRSs. Thus the second-level R-TRS classifier is constructed

for on-demand use. We will discuss and address the underlying

challenges of dealing with skewed class distribution in Section

V.

On-demand Operations: On the right of Figure 6 we show

the two-level application of the method on an unlabeled ticket.

First we determine if the NL content of the ticket is associated

with either R or NR using the top level R/NR classifier.

Second, if it is associated with R then the second level R-TRS

classifier is applied to provide the path recommendation for the

CEN. Also SL estimation is performed for the recommended



path. If the content is associated with NR class then it is

flagged and turned over to the CEN for resolving without

assistance. In Figure 6 within the on-demand operations box,

all of the dotted boxes are denoting predicted values. In

Section VI we discuss the validation and SL advantages of

the framework.

V. EXPERIMENTS USING THE TWO-LEVEL CLASSIFICATION

FRAMEWORK

Based on the existence of a strong relationship between

frequent content and routine paths, we proceeded to build

the classifiers. The learning algorithm we leveraged is the

Transformed Weight-normalized Complement Naı̈ve Bayes

(TWCNB) [13] for both top and second level classifiers of the

Framework introduced in Figure 6. This algorithm is designed

to perform on skewed training data, and it incorporates effec-

tive weight normalization and feature transformations. Further

rationale for selecting this method follows.

Training and classification (R/NR and TRS recommen-

dation): We modified TWCNB for path (R-TRS) classification

as follows. Let:

1) ~t be the training set of routine tickets that previously got

resolved by an R-TRS: ~t = (~t1, ~t2, ..., ~tn) and tij is the

frequency of the j th word of the dictionary in ticket ~ti.

2) ~RS = ( ~rs1, ~rs2, ..., ~rsn) be the resolving sequences

corresponding to each of the training tickets.

3) C = {C1, C2, ..., Cs} be the set of distinct paths.

4) ~test = (f1, f2, ..., fm) be a test ticket where fj is the

frequency of the j th word of the dictionary in the test

ticket.

Then train and predict:

ω = R-TRS Training(~t, ~RS) (11)

Predicted label( ~test) = argmin
c∈C

m
∑

j=1

fj · ω(j | c) (12)

Algorithm 1 R-TRS Training (~r, ~RS)

1: for j = 1 to m do

2: IDFj = log
n

∑n

k=1 δkj
3: for i = 1 to n do

4: TFij = log(tij + 1)

5: for j = 1 to m do

6: for i = 1 to n do

7: NCij =
TFij · IDFj

√

∑m

k=1(TFik · IDFk)2

8: for j = 1 to m do

9: for h = 1 to s do

10: P̂ (j | Ch) =
λ+

∑n

k:rsk 6=ch
NCkj

mλ+
∑n

k:rsk 6=ch

∑m

p=1 NCkp

11: ω(j | Ch) =
log P̂ (j | Ch)

∑m

k=1 log P̂ (k | Ch)

12: Return ω

The function call R-TRS Training(~t, ~RS) is elaborated

by Algorithm 1 which performs the training. It uses a set

of transforms for term frequencies adapted from [13]. These

transforms resolve different poor modeling assumptions of

Naı̈ve Bayes classifier including skewed word and class distri-

bution. ω is the transformed weighted normalization function

over P (j | c) where j can be the index of any word in

the corpus dictionary, and c can be complement of any class

in the data set (distinct paths in this case). Some details of

Algorithm 1 are: Line 2 constructs inverse document frequency

transformation where δkj = 1 if the j th word of the

dictionary is in ticket ~tk, otherwise δkj = 0. Line 3: n is

the number of tickets in the training set. Line 4: constructs

term frequency transformation. Line 7: provides the length

norm, where m is the size of the corpus dictionary. Line 9:

s is the cardinality of the set C. Line 10: builds a smoothed

probability function that estimates the probability of j th word

of the dictionary not in the class Ch. Line 11: is the log weight

normalization of P̂ (j | Ch).
Experimental process overview: For both classifiers Figure

6 we extracted features from the NL content and the text

was first transformed to vectors with weighted normalized

values as discussed in the ‘dampening the effect of skewed

data bias’ section V. We dropped the stop words and removed

low-frequency words, thus reducing the dimensions of our

feature vectors to 4623. Next we randomly sampled 80% of

< t.c, t.rs > tuples (i.e. 119200 tickets) for end-to-end model

training and 20%(i.e. 29800 tickets) for validation. That 80%

was used to train the top level R/NR classifier, and the routine

portion of it (i.e. 35776 tickets or 24% of all tickets) was used

to train the second level R-TRS classifier. The training on each

level was validated by 10-fold cross validation (i.e. rotation

on 90%, 10% splits). After tuning parameters of each of the

classifiers separately, we observed significant performance by

both classifiers in isolation. Then we measured the overall

performance of the sequentially combined classifiers by using

the 20% validation set.

A. Performance evaluation with respect to SL

Given our goal of achieving trustworthy recommendations

we opted to increase the reliability at the expense of reducing

the number of tickets for which assistive recommendations

were presented. Assume the ground truth labels, actual-R

and actual-NR. The human experts are capable to handle

(1) all actual-NR tickets, and (2) actual-R tickets that got

misclassified as NR. On the other hand, it is unfavorable for

trust if an actual-NR ticket is misclassified as R, and is further

recommended with an R-TRS. Therefore, in this application

domain the precision of the top-level classifier and the

accuracy of the second-level classifier are more important for

the overall performance than the coverage. In particular from

a SL achievement perspective, it is notable that the recall of

the top level classifier is not as important as its precision since

false negatives (misclassified routine tickets) will nevertheless

get routed through the CEN and addressed directly by human

experts (i.e. without recommendations). The performance of



Fig. 7. ROC curves for three variations of R/NR classifier

our two-level recommendation framework is evaluated by

measuring the proportion of tickets that their t.rs got correctly

recommended, to all tickets that got recommended as R.

Formally:

Overall R− Precision =
#(t.rs correctly classified)

#(tickets predicted as R)
(13)

Evaluating the R/NR labeling strategy: As mentioned

in Section IV our R/NR labeling strategy was chosen from

[9]. This is an unsupervised method that finds a non-trivial

optimal cut that bifurcates the ticket set such that the distance

between the two content distributions is maximized. The

content distribution with the higher average log likelihood is

then labeled as R and the other distribution is labeled as NR.

A path is labeled as R if and only if majority of the tickets

that it has resolved in the history fall within the R content

distribution. Otherwise that path is labeled as NR.

The above strategy in our experiments labeled most of

the TRSs as NR (77.4%), which favorably conforms to our

machine learning goal proposed in Subsection II-D. Thus we

called this labeling strategy as ‘Low-rate Routine labeling’

(LRL). To evaluate the optimal bifurcation strategy, we chose

two alternative labeling strategies as baselines: (1) ‘Balanced

labeling’ (BL) where the most frequent paths are labeled as

R in such a way that these paths together resolve 50% of all

tickets, and the rest are labeled as NR. (2) ‘High-rate Routine

labeling’ (HRL) where the most frequent paths are labeled as

R such that these paths together resolve 75% of all tickets,

and the rest are labeled as NR.

Per each labeling strategy we constructed a top level R/NR

classifier (using the TWCNB learning algorithm). Our goal

here was to find the classifier that consistently outperforms

the other two. Figure 7 presents the Receiver Operating Char-

acteristic (ROC) curves corresponding to different labeling

strategies. The concept of ROC was first introduced in [5] and

it generally aims to show performance of a binary classifier as

its decision threshold varies. In the context of this study the

Fig. 8. Overall R-Precision of flexible, strict, and greedy models.

true positive rate (TPR) (i.e. recall) is the fraction of actual-R

tickets that also got classified as R. The false positive rate

(FPR) is the fraction of actual-NR tickets that unfavorably

got classified as R. The perfect case is to have TPR at 1

and the FPR at 0. The ROC curves in Figure 7 are drawn

as a result of varying classifiers’ decision thresholds from

0 to 1. Performance of these classifiers are evaluated by

the area under the ROC curve (AUROC). Observably our

adapted optimal cut strategy (i.e. LRL) outperforms both of the

baselines. To be precise, AUROC for LRL, BL, and HRL are

respectively 0.86, 0.83, and 79. Thus we continued to use the

optimal cut strategy in construction of our top level classifier.

R/NR Classification – tuning the Precision/Recall trade-

off: In this application domain, increasing the precision of

the R class can significantly improve the SL performance

overall. Therefore the goal here is to find an effective decision

threshold which favors precision a bit more over recall. Based

on equation 12 the decision threshold is used to classify a

ticket as R based on: P̂ (C = ‘R’ | τ) > θ

Here P̂ is the inferred probability for a test ticket τ to

be classified as R. θ is the decision threshold acting as the

minimum acceptable probability value to classify a ticket as

R. We used the LRL ROC curve from Figure 7 to pinpoint an

effective decision threshold. After examination of the coverage

of candidate decision thresholds we arrived at a point on the

ROC curve which yeilds a resonable high precision (through

a low FPR) with an acceptable recall and coverage. More

specifics of this sweet spot are as follows: recall=0.553,

FPR=0.073, precision=0.802, and Routine Coverage=0.202.

The decision threshold corresponding to this point found to

be θ = 0.650. Thus clearly resulting in a more conservative

routine calls by the top level classifier.

VI. EXPERIMENTAL VALIDATION

Finally by applying the same enterprise data, we compared

two variations of the proposed framework, Strict model and

Flexible model, against an existing sequence recommendation

model called Generative greedy model taken from [7].



Strict and Flexible models: For the validation of path

recommendations we define two different ways of claiming

successful classification on a test ticket: (1) strict TRS match-

ing: a ticket is called correctly classified if its predicted R-TRS

matches exactly with its actual t.rs. (2) flexible TRS matching:

a ticket is called correctly classified if its predicted R-TRS is

within the congruence set of its actual t.rs.

The congruence set of a certain path like P consists other

paths that are equally eligible to resolve same tickets that

historically got resolved by P. Such replications exist by

design among some of the routine paths in order to (1) balance

the regular workload over more nodes in the network to

improve the network throughput, and (2) make the network

more tolerant against unavailability of certain nodes. Here

for each of the routine paths in our domain, subject matter

experts established a handcrafted congruence set representing

corresponding qualified alternative paths, which we used for

the flexible matching.

Baseline model - Generative Greedy: The Generative

Greedy is considered a robust transfer prediction model [7].

This model is designed to make one-step transfer predictions

and select the most probable resolver next. In our experiment

Generative Greedy has shown effectiveness in predicting the

final group in the sequence for actual-NR tickets with long

TRSs. To be able to compare the results, we re-defined the

‘Overall R-Precision’ for Generative Greedy: for any test ticket

predicted as R, we let the Generative Greedy also predict n

transfers at once where n is the length of the actual TRS. If

the Generative Greedy matches the actual TRS, we consider it

as correctly classified. The ratio of correctly classified TRSs

divided by total number of predictions is considered as Overall

R-Precision for this method.

Figure 8 shows the overall R-precision of the developed

sequence models as the size of the training set grows. All three

models converge to a stable precision before reaching to 60%

of the size the training set. Many of the misclassified TRSs in

the strict model are found to be within the congruence set of

the actual TRS. Therefore as can be seen we achieved 17%

improvement over strict model by allowing misclassification

within congruence sets. Also the flexible model outperforms

the baseline by 34%. (flexible:77%, strict: 60%, generative:

43%).

SL and Time to Resolve (TTR) for classified tickets:

For the fraction of test tickets that R-TRSs are recommended,

we developed a simple expectation model to further estimate

their TTR and SL compliance (SL Estimation in Figure 6). Let

TP,RP be a subset of the training set that includes all tickets

with priority P that were resolved by a particular routine path

RP . For a test ticket τ with priority P (i.e. τ.p = P ) and

recommended path RP the Expected Time to Resolve (ETTR)

is estimated as the mean TTR of all tickets in TP,RP . Formally:

τ.ettr =
1

| TP,PR |

∑

t∈TP,PR

t.ttr (14)

For ETTR evaluation, a held-out test set was used from

Fig. 9. ETTR vs ATTR for tickets with a recommended R-TRS (refer to
Table II for description of the regions)

TABLE II
EVALUATION OF EXPECTED TIME TO RESOLVE

Region# ETTR ATTR ETTR>ATTR? % of test tickets

1 Met Met TRUE 65.9% [1078]

2 Breached Met TRUE 0.2% [3]

3 Met Met FALSE 31.8% [521]

4 Met Breached FALSE 1.9% [31]

5 Breached Breached FALSE 0.2% [3]

6 Breached Breached TRUE 0.0% [0]

which 1636 routine tickets eventually received recommended

R-TRSs from the two-level classifier. Figure 9 illustrates a

scatter plot of these tickets which compares ETTR of tickets

against their actual time to resolve (ATTR). In order to

present different ticket priorities within a unified scale we

normalized all ETTR and ATTR values by their service time,

thus generating NETTR and NATTR values. As a result of

normalization any NETTR or NATTR value greater than 1

signals a SL breach. Also the diagonal line represents the

identity relation between ETTR and ATTR. Tickets above the

diagonal line imply ETTR > ATTR, and ticket below it imply

ETTR < ATTR. Therefore, there will be six regions on the

scatter plot subject to further analysis.

In Table II the common SL and TTR properties of tickets

in each region is presented. Also the last column reports

the probability (and frequency) distribution of tickets over

different regions.

The key insights reported in Figure 9 and Table II are

as follows: (1) Almost all routine tickets that actually met

their SL were also estimated to meet their SL based on

their recommended R-TRS with an exception of tickets in

region 2 (SL Recall = 0.998). (2) Most of the routine tickets

that were estimated to meet their SL were also found to

actually meet their SL with an exception of tickets in region 4



(SL Precision = 0.980). This confirms the fact that estimated

SL compliance is a true indicator of the actual SL compliance.

(3) Most of the tickets that actually breached their SL were

estimated to meet their SL with an exception of tickets in

region 5 (SL false positive rate = 0.911). Despite the common

intuition that FPR is an error measure and has to be minimized,

here a high FPR is a point of strength for our estimation

model. The reason for high FPR is that in the absence of

recommendations, human decision anomalies cause a fraction

of routine tickets to take NR-TRSs. Our data has shown

that 87% of all routine breached tickets were actually routed

through NR-TRSs. However, nearly all of these tickets could

have met their SL had they taken their correct R-TRSs through

recommendations. That is why ETTR is significantly lower

than ATTR for most of the tickets in regions 4 and 5. This

clearly portrays the contribution of our statistical learning

approach in reducing the negative impact of human decision

anomalies. (4) Based on ETTRs calculated above, recom-

mendations significantly reduced the MTTR of the routine

tickets by 34%. Viewing the system as a whole, the two-level

classification method reduces the MTTR of all tickets by an

average of 7%.

VII. CONCLUSIONS

We have introduced a new framework that improves col-

lective performance by the Collective Expert Network in

applications like the service desk within the enterprise. If

a ’routine’ path on the CEN has historically achieved the

SL by resolving the tickets within service time then it has

met the time and customer satisfaction goals. Using this and

other principles exhibited by the CEN in its digital trace,

we developed the two-level framework suited for enterprise

deployment. The path recommendation results are promising

as they indicate 77% R-precision for the end-to-end model.

The recommended R-TRSs are more than 96% likely to meet

the SL goals. The overall two-level classification model has

also shown 10% reduction in average SL violation rate mainly

by preventing frequent content from getting misrouted by the

CEN. More research needs to be conducted in improving

the non-routine cases by engaging the human-in-the-loop in

production environments.
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